Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Inflamm Res ; 15: 3467-3475, 2022.
Article in English | MEDLINE | ID: covidwho-2141144

ABSTRACT

Purpose: To detect antibody responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients undergoing hemodialysis and to investigate vaccine-related adverse events. Patients and Methods: A total of 120 hemodialysis (HD) patients and 24 healthy controls (HCs) who had not been previously infected with SARS-CoV-2 and had received their first dose of the inactivated vaccine (CoronaVac; Sinovac Biotech Ltd) were recruited for this study. All participants were scheduled to receive a second dose of inactivated SARS-CoV-2 vaccine. Serum-specific immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the SARS-CoV-2 were detected at least 14 days after the second dose of vaccine using a commercial kit. Positive and negative results were defined as a sample/cutoff (S/CO) ratio≥1.00 and <1.00, respectively. Vaccination-related adverse events were assessed using a standardized questionnaire. Results: There were no significant differences regarding the seroprevalences of IgG and IgM antibodies against SARS-CoV-2 and the self-reported vaccination-related adverse events between HD patients and HCs. The analysis results for HD patients suggest that 82 (68.3%) and 27 (22.5%) tested positive for IgG and IgM, respectively. The levels of IgG were higher than IgM levels (P<0.0001). In addition, the IgG-positive group had significantly higher serum albumin levels than the IgG-negative group (P<0.05). Only mild vaccine-related adverse events were observed in two patients (1.66%) and in one healthy individual (4.2%). Conclusion: The seroprevalences of IgG and IgM antibodies against SARS-CoV-2 and vaccination-related adverse effects are similar between HD and HCs. The inactivated SARS-CoV-2 vaccine is effective and safe in inducing near-term immunity in hemodialysis patients.

2.
Front Immunol ; 13: 991256, 2022.
Article in English | MEDLINE | ID: covidwho-2065519

ABSTRACT

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of diseases characterized by inflammation and destruction of small and medium-sized blood vessels. Clinical disease phenotypes include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the rise in recent years with advances in ANCA testing. The etiology and pathogenesis of AAV are multifactorial and influenced by both genetic and environmental factors, as well as innate and adaptive immune system responses. Multiple case reports have shown that sustained exposure to silica in an occupational environment resulted in a significantly increased risk of ANCA positivity. A meta-analysis involving six case-control studies showed that silica exposure was positively associated with AAV incidence. Additionally, exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for AAV. AAV has seasonal trends. Studies have shown that various environmental factors stimulate the body to activate neutrophils and expose their own antigens, resulting in the release of proteases and neutrophil extracellular traps, which damage vascular endothelial cells. Additionally, the activation of complement replacement pathways may exacerbate vascular inflammation. However, the role of environmental factors in the etiology of AAV remains unclear and has received little attention. In this review, we summarized the recent literature on the study of environmental factors, such as seasons, air pollution, latitude, silica, and microbial infection, in AAV with the aim of exploring the relationship between environmental factors and AAV and possible mechanisms of action to provide a scientific basis for the prevention and treatment of AAV.


Subject(s)
Air Pollutants , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Churg-Strauss Syndrome , Granulomatosis with Polyangiitis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , Antibodies, Antineutrophil Cytoplasmic , Carbon Monoxide/therapeutic use , Churg-Strauss Syndrome/complications , Endothelial Cells/pathology , Humans , Inflammation/complications , Peptide Hydrolases , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL